Support Vector Machines for Uplift Modeling

Łukasz Zaniewicz2 Szymon Jaroszewicz1,2

1National Institute of Telecommunications
Warsaw, Poland

2Institute of Computer Science
Polish Academy of Sciences
Warsaw, Poland
What is uplift modeling?

From workshop’s description:

Traditionally, causal relationships are identified based on controlled experiments. [...] there has been an increasing interest in discovering causal relationships from observational data only.
What is uplift modeling?

From workshop’s description:

Traditionally, causal relationships are identified based on controlled experiments. [...] there has been an increasing interest in discovering causal relationships from observational data only.

- Suppose we do have data from a controlled experiment
- Question: what can Machine Learning do for us?
- Relatively little interest in the ML community
What is uplift modeling?

Given two training datasets:

1. the treatment dataset
 individuals on which an action was taken
2. the control dataset
 individuals on which no action was taken
 used as background

Build a model which predicts the causal influence of the action on a given individual
Uplift modeling

Notation:
- P^T probabilities in the treatment group
- P^C probabilities in the control group

Traditional classifiers predict the conditional probability

$$P^T(Y \mid X_1, \ldots, X_m)$$

Uplift models predict change in behaviour resulting from the action

$$P^T(Y \mid X_1, \ldots, X_m) - P^C(Y \mid X_1, \ldots, X_m)$$
Why uplift modeling?

A typical marketing campaign

Sample → Pilot campaign → Model $P(\text{buy}|\mathbf{X})$ → Select targets for campaign

But this is not what we need! We want people who bought because of the campaign, not people who bought after the campaign.
Why uplift modeling?

A typical marketing campaign

- Sample
- Pilot campaign
- Model $P(buy|\mathbf{X})$
- Select targets for campaign

- But this is not what we need!
- We want people who bought \textbf{because} of the campaign
- Not people who bought \textbf{after} the campaign
We can divide potential customers into four groups:

1. Responded *because* of the action *(the people we want)*
2. Responded, but would have responded *anyway* *(unnecessary costs)*
3. Did not respond and the action had *no impact* *(unnecessary costs)*
4. Did not respond *because* the action had a *(negative impact)*
Marketing campaign (uplift modeling approach)

Treatment sample \rightarrow \text{Pilot campaign}

Model
\[P^T(\text{buy}|X) - P^C(\text{buy}|X) \]

Select targets for campaign

Control sample
Applications in medicine

- A typical medical trial:
 - treatment group: gets the treatment
 - control group: gets placebo (or another treatment)
 - do a statistical test to show that the treatment is better than placebo

- With uplift modeling we can find out for whom the treatment works best

- Personalized medicine
Main difficulty of uplift modeling

- Rubin’s causal inference framework

The fundamental problem of causal inference

- Our knowledge is always incomplete
- For each training case we know either
 - what happened after the treatment, or
 - what happened if no treatment was given
- Never both!

- This makes designing uplift algorithms challenging
The two model approach

An obvious approach to uplift modeling:

1. Build a classifier M^T modeling $P^T(Y|X)$ on the treatment sample
2. Build a classifier M^C modeling $P^C(Y|X)$ on the control sample
3. The uplift model subtracts probabilities predicted by both classifiers

$$M^U(Y|X) = M^T(Y|X) - M^C(Y|X)$$
Two model approach

Advantages:
- Works with existing classification models
- Good probability predictions \(\Rightarrow\) good uplift prediction

Disadvantages:
- Differences between class probabilities can follow a different pattern than the probabilities themselves
 - each classifier focuses on changes in class probabilities but ignores the weaker ‘uplift signal’
 - algorithms designed to focus directly on uplift can give better results
Support Vector Machines (SVMs) are a popular Machine Learning algorithm.

Here we adapt them to the uplift modeling problem.
Recall that the outcome of an action can be:

- positive
- negative
- neutral
Recall that the outcome of an action can be:
- positive
- negative
- neutral

Main idea
Use two parallel hyperplanes dividing the sample space into three areas:
- positive (+1)
- neutral (0)
- negative (−1)
Uplift Support Vector Machines

\[H_1 : \langle w, x \rangle + b_1 = 0 \]
\[H_2 : \langle w, x \rangle + b_2 = 0 \]
How do we train Uplift SVMs?

Classical SVMs:

need to know if a case is classified correctly

Fundamental problem of causal inference

⇒ We never know if a point was classified correctly!

The algorithm must use only the information available
Four types of points: T_+, T_-, C_+, C_-

Positive area (+1):
- T_-, C_+ definitely misclassified
- T_+, C_- may be correct, at worst neutral

Negative area (-1):
- T_+, C_- definitely misclassified
- T_-, C_+ may be correct, at worst neutral

Neutral area (0):
- all predictions may be correct or incorrect
Penalize points separately for being on the wrong side of each hyperplane

Points in the neutral area are penalized for crossing one hyperplane
 - this prevents all points from being classified as neutral

Points which are definitely misclassified are penalized for crossing two hyperplanes
 - such points should be avoided, thus the higher penalty

Other points are not penalized
Uplift Support Vector Machines – problem formulation

\[H_1^{+} + \xi_{i,1} + C_+^{+} \xi_{i,2} + C_-^{+} \xi_{i,1} + \xi_{i,2} + C_-^{+} \xi_{i,1} - C_-^{+} \xi_{i,2} = 0 \]

\[H_2^{+} T_+ \]

\[H_1^{-} T_- \]

Łukasz Zaniewicz, Szymon Jaroszewicz | Uplift SVMs
Optimization task – primal form

\[
\begin{align*}
\min_{\mathbf{w}, b_1, b_2 \in \mathbb{R}^{m+2}} & \quad \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle + C_1 \sum_{\mathbf{D}_T \cup \mathbf{D}_-^C} \xi_{i,1} + C_2 \sum_{\mathbf{D}_T \cup \mathbf{D}_-^C} \xi_{i,1} \\
& \quad + C_2 \sum_{\mathbf{D}_T \cup \mathbf{D}_-^C} \xi_{i,2} + C_1 \sum_{\mathbf{D}_T \cup \mathbf{D}_-^C} \xi_{i,2},
\end{align*}
\]

subject to:

\[
\begin{align*}
\langle \mathbf{w}, \mathbf{x}_i \rangle + b_1 & \leq -1 + \xi_{i,1}, \text{ for } (\mathbf{x}_i, y_i) \in \mathbf{D}_T^+ \cup \mathbf{D}_-^C, \\
\langle \mathbf{w}, \mathbf{x}_i \rangle + b_1 & \geq +1 - \xi_{i,1}, \text{ for } (\mathbf{x}_i, y_i) \in \mathbf{D}_T^- \cup \mathbf{D}_+^C, \\
\langle \mathbf{w}, \mathbf{x}_i \rangle + b_2 & \leq -1 + \xi_{i,2}, \text{ for } (\mathbf{x}_i, y_i) \in \mathbf{D}_T^+ \cup \mathbf{D}_-^C, \\
\langle \mathbf{w}, \mathbf{x}_i \rangle + b_2 & \geq +1 - \xi_{i,2}, \text{ for } (\mathbf{x}_i, y_i) \in \mathbf{D}_T^- \cup \mathbf{D}_+^C, \\
\xi_{i,j} & \geq 0, \text{ dla } i = 1, \ldots, n, j \in \{1, 2\},
\end{align*}
\]
We have two penalty parameters:

- C_1 penalty coefficient for being on the wrong side of one hyperplane
- C_2 coefficient of additional penalty for crossing also the second hyperplane

- All points classified as neutral are penalized with $C_1 \xi$
- All definitely misclassified points are penalized with $C_1 \xi$ and $C_2 \xi$

How do C_1 and C_2 influence the model?
Influence of penalty coefficients C_1 and C_2 on the model

Lemma

For a well defined model $C_2 \geq C_1$. Otherwise the order of the hyperplanes would be reversed.

Lemma

If $C_2 = C_1$ then no points are classified as neutral.

Lemma

For sufficiently large ratio C_2/C_1 no point is penalized for crossing both hyperplanes. (Almost all points are classified as neutral.)
The C_1 coefficient plays the role of the penalty in classical SVMs.

The ratio C_2/C_1 decides on the proportion of cases classified as neutral.
Example: the tamoxifen drug trial data

![Graph showing tamoxifen data]

- **Classified Negative**
- **Classified Neutral**
- **Classified Positive**

 Łukasz Zaniewicz, Szymon Jaroszewicz | Uplift SVMs
Example: the tamoxifen drug trial data

Uplift SVMs

 Łukasz Zaniewicz, Szymon Jaroszewicz

Uplift SVMs
Evaluating uplift models
Evaluating uplift models

- We have two separate test sets:
 - a treatment test set
 - a control test set

Problem
To assess the gain for a customer we need to know both treatment and control responses, but only one of them is known.

Solution
Assess gains for groups of customers.
For example:

\text{Gain for the 10\% highest scoring customers} =
\% \text{ of successes for top 10\% treated customers} -
\% \text{ of successes for top 10\% control customers}
Uplift curves are a more convenient tool:

- Draw separate lift curves on treatment and control data (TPR on the Y axis is replaced with percentage of successes in the whole population)
- **Uplift curve** =
 - lift curve on treatment data – lift curve on control data
- Interpretation: net gain in success rate if a given percentage of the population is treated

- We can of course compute the **Area Under the Uplift Curve (AUUC)**
An uplift curve for UCI breast cancer data (artificially split into T/C groups)

Łukasz Zaniewicz, Szymon Jaroszewicz

Uplift SVMs
Experimental evaluation

- Used 5 datasets with real control groups
- Used additional 13 dataset artificially split into T/C groups
- Uplift SVMs compared favorably with other models
 - better than double SVM model on 13 out of 18 datasets
 - better than uplift decision trees on 12 out of 18 datasets
Thank you!